Toward Quantum-Limited Position Measurements Using Optically Levitated Microspheres

نویسندگان

  • KENNETH G. LIBBRECHT
  • ERIC D. BLACK
  • Norman Bridge
چکیده

We describe the use of optically levitated microspheres as test masses in experiments aimed at reaching and potentially exceeding the standard quantum limit for position measurements. Optically levitated microspheres have low mass and are essentially free of suspension thermal noise, making them well suited for reaching the quantum regime. Table-top experiments using microspheres can bridge the gap between quantum-limited position measurements of single atoms and measurements with multi-kg test masses like those being used in interferometric gravitational wave detectors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Search for millicharged particles using optically levitated microspheres.

We report results from a search for stable particles with charge ≳10^{-5}e in bulk matter using levitated dielectric microspheres in high vacuum. No evidence for such particles was found in a total sample of 1.4 ng, providing an upper limit on the abundance per nucleon of 2.5×10^{-14} at the 95% confidence level for the material tested. These results provide the first direct search for single p...

متن کامل

Detecting high-frequency gravitational waves with optically levitated sensors.

We propose a tunable resonant sensor to detect gravitational waves in the frequency range of 50-300 kHz using optically trapped and cooled dielectric microspheres or microdisks. The technique we describe can exceed the sensitivity of laser-based gravitational wave observatories in this frequency range, using an instrument of only a few percent of their size. Such a device extends the search vol...

متن کامل

Short-range force detection using optically cooled levitated microspheres.

We propose an experiment using optically trapped and cooled dielectric micro-spheres for the detection of short-range forces. The center-of-mass motion of a microsphere trapped in vacuum can experience extremely low dissipation and quality factors of 10(12), leading to yoctonewton force sensitivity. Trapping the sphere in an optical field enables positioning at less than 1 μm from a surface, a ...

متن کامل

Cavity opto-mechanics using an optically levitated nanosphere.

Recently, remarkable advances have been made in coupling a number of high-Q modes of nano-mechanical systems to high-finesse optical cavities, with the goal of reaching regimes in which quantum behavior can be observed and leveraged toward new applications. To reach this regime, the coupling between these systems and their thermal environments must be minimized. Here we propose a novel approach...

متن کامل

Electron spin control of optically levitated nanodiamonds in vacuum

Electron spins of diamond nitrogen-vacancy (NV) centres are important quantum resources for nanoscale sensing and quantum information. Combining NV spins with levitated optomechanical resonators will provide a hybrid quantum system for novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centres in low vacuum. We observe that the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003